Grades K-3 Abstract

RS Increase. I TOJECT I age I

Grades K-3 Present Technology Section

HempBlOCK
Source: HempBLOCK USA

Overview of HempBlock 1-3

- •HempBlock is a sustainable building material made from hemp hurds, lime, and water.
- •It is lightweight, breathable, and provides natural insulation.
- •Known for its fire resistance, it slows down the spread of flames but does not actively extinguish fires.
 - Scientific Principles
- •Low thermal conductivity helps resist heat transfer.
- •Lime carbonation creates a protective fire-resistant barrier.
- Problem Definition
- •Current HempBlock can withstand fire but does not actively suppress it.
- •In extreme fire conditions, it may eventually degrade, leading to structural failure.

Grades K-3 History Section 1-3

Ancient Times – Early Uses of Hemp in Construction

- •~500 BCE: Hemp-based materials used in ancient Rome for shipbuilding and insulation.
- •6th Century: France begins using hemp-lime mixtures in building construction.

20th-21st Century – Development of Fire-Resistant HempBlock

- •1980s: Rediscovery of hempcrete as an eco-friendly alternative to concrete.
- •2000s: Modern HempBlock emerges as a commercial building material with improved insulation.
- •2010s-Present: Research enhances fire resistance, making it more viable in fire-prone areas.

Grades K-3 Future Technology: BlazeBlock - The Fireproof Future of Sustainable Homes

Our Vision 4-6

BlazeBlock will evolve beyond just fire resistance—it will **actively fight fires**. By integrating **self-extinguishing technology**, this next-generation HempBlock will enhance home safety while maintaining its

eco-friendly benefits.

Futuristic BlazeBlock (AI Generated)

BlazeBlock could help **reduce wildfire destruction** by creating fire-resistant homes and buildings, minimizing property loss and improving safety in fire-prone regions. ⁴⁻⁶

Microcapsules imbedded in BlazeBlocks releasing gel to extinguish fire

Grades K-3 Future Technology: Key Features of Future Technology: Rey Feature Technology

- Fire-Activated Microcapsules 7-9
 - 1. Special heat-sensitive capsules embedded in the block release **fire-retardant gel** when exposed to extreme heat.
 - 2. Inspired by self-healing materials used in aerospace engineering.
- Smart Thermal Sensors ^{7,10}
 - 1. Tiny temperature sensors detect rising heat and trigger a **localized** cooling response.
 - 2. Can send alerts to fire response systems for early detection.
- Bio-Engineered Fungi for Fire Suppression ¹¹⁻¹³
 - 1. A special **mycelium network** inside the block releases **natural fire-retardant compounds** when exposed to high temperatures.
 - 2. Inspired by how mushrooms naturally produce protective enzymes in extreme conditions.

Grades K-3 Future Technology: Scientific Principles Involved

Thermal Expansion & Triggered Release:7-9
Heat causes the microcapsules to burst,

dispersing fire-retardant substances.

Heat Sensing & Al Integration:^{7,10}

Sensors detect temperature spikes and activate suppression mechanisms.

Bio-Chemical Reaction:¹¹⁻¹³

Mycelium reacts to heat stress by producing compounds that **smother flames** and **reduce oxygen availability** in affected areas.

TOSHIBA | 100 nsta

Grades K-3 Breakthroughs: Making BlazeBlock a Reality

Why This Future Technology Doesn't Exist Today
BlazeBlock, with its self-extinguishing fire suppression system, does
not yet exist due to key scientific and engineering challenges:

- Material Compatibility: Integrating fire-retardant gel microcapsules, smart sensors, and mycelium networks without compromising HempBlock's breathability, durability, and sustainability.
- Manufacturing Limitations: Developing cost-effective methods to embed these technologies while maintaining structural integrity.
- **Testing & Certification:** Meeting international fire safety standards and proving the effectiveness of self-extinguishing features in realworld conditions.

Grades K-3 Breakthroughs: Key Breakthroughs Required

1. Heat-Activated Microcapsules⁷⁻⁹

- •Research into nano-engineered capsules that store and release fire-retardant gel when exposed to extreme heat.
- •Challenge to overcome: Ensuring the capsules remain intact under normal conditions but rupture precisely when needed.

2. Smart Thermal Sensors^{7,10}

- •Developing ultra-thin, self-powered AI-based temperature sensors that detect heat and trigger an alert fire response.
- •Challenge to overcome: Miniaturizing sensors while maintaining affordability and reliability.

3. Bio-Engineered Mycelium for Fire Suppression¹¹⁻¹³

- •Engineering fungi strains to produce **flame-retardant enzymes** when exposed to heat.
- •Challenge to overcome: Ensuring mycelium growth remains controlled and doesn't interfere with structural strength.

Grades K-3 Breakthroughs: Investigation- Testing Fire-Activated Microcapsules

Research Question: How effectively do heat-activated microcapsules release fire-retardant gel under extreme temperatures?

Methodology:

1.Prototype Development:

1. Embed microcapsules filled with fire-retardant gel inside a BlazeBlock sample.

2.Controlled Fire Exposure:

- 1. Place samples in a high-temperature test chamber (500–1000°F).
- 2. Apply direct flame to simulate real fire conditions.

3.Data Collection:

- 1. Temperature Activation Point: Measure the exact heat level at which the capsules burst.
- 2. Suppression Effectiveness: Compare fire spread rate on treated vs. untreated samples.
- 3. Material Integrity: Analyze block structure before and after exposure.

4.Expected Outcome:

- 1. The microcapsules rupture at a critical heat level, releasing gel and slowing/extinguishing flames.
- 2. Future modifications improve efficiency for real-world application.

Grades K-3 Design Process: Alternative Idea 1: Spray-On Fireproof Coating

Concept: A special fire-resistant liquid would be sprayed onto HempBlocks after installation to create an additional protective barrier.

Why We Rejected It:

- •The coating could **wear off over time** due to weather conditions.
- Frequent reapplication would be costly and inconvenient.
- •Did not provide an **active** fire suppression system—only delayed fire spread.

Why BlazeBlock is Better:

- •Built-in **fire-retardant microcapsules** eliminate the need for reapplication.
- •Offers long-term protection without maintenance.

Grades K-3 Design Process: Alternative Idea 2: Built-In Sprinkler System

Concept: A network of **miniature water sprinklers** embedded within walls would activate when detecting extreme heat.

Why We Rejected It:

- •Water supply dependency—if the system lacked water pressure, it would fail.
- •**High cost**—complex piping and installation increase expenses.
- •Potential water damage—sprinklers could misfire, causing unnecessary flooding.

Why BlazeBlock is Better:

- •Uses fire-retardant gel, requiring no external water supply.
- •Functions **independently**, reducing installation and maintenance costs.

 Project Page 11

Grades K-3 Design Process: Alternative Idea 3: Fire-Resistant Chemical Additives

Concept: HempBlock could be infused with **synthetic fireproof chemicals** to improve resistance.

Why We Rejected It:

- •Some **chemical additives are toxic** and may release harmful fumes when burned.
- •Production could lead to environmental pollution.
- Might compromise the natural breathability of HempBlock.

Why BlazeBlock is Better:

- •Uses natural bio-engineered mycelium for fire suppression.
- •Eco-friendly with no harmful emissions.
- •Maintains the **structural integrity and breathability** of HempBlock.

Grades K-3 Consequences

Potential Positive Consequences:

- •Fire Safety: Protects homes & lives in wildfire-prone areas.
- •Eco-Friendly: Made from renewable hemp; non-toxic fire suppression.
- •Cost Savings: Reduces fire damage & insurance costs.
- •Innovation & Jobs: Boosts the green building industry.

Potential Negative Consequences:

- •Higher Initial Costs: Advanced materials may be expensive at first.
- •Environmental Unknowns: Long-term effects of bio-engineered fungi need more research.
- •Adoption Barriers: Builders may resist change; regulations may slow rollout.

Grades K-3 Bibliography- 1

- 1. Rivas-Aybar D, John M, Biswas W. Can the Hemp Industry Improve the Sustainability Performance of the Australian Construction Sector? *Buildings*. 2023;13(6):1504. https://doi.org/10.3390/buildings13061504
- 2. Nidhi Dhull. AZoBuild. AZoBuild. Published September 25, 2024. https://www.azobuild.com/news.aspx?newsID=23612
- 3. Haven Earth. Materials Welcome to Haven Earth. Welcome to Haven Earth. Published December 19, 2022. Accessed January 29, 2025. https://havenearth.biz/materials/
- 4. Cal Fire. 2025 Fire Season Outlook | Current Emergency Incidents. Ca.gov. Updated Jan 2025. https://www.fire.ca.gov/incidents
- 5. Ian Thompson. How Homes Survived The LA Wildfires: Design Strategies For Fire Resistance. The Build Review. Published January 15, 2025. Accessed January 29, 2025. https://buildreview.org/la-wildfires-design-strategies-for-fire-resistance/

Grades K-3 Bibliography- 2

- 6. Parks. Jasper Wildfire 2024. Canada.ca. Published 2024. https://parks.canada.ca/pn-np/ab/jasper/visit/feu-alert-fire/feudeforet-jasper-wildfire
- 7. Gravit MV, Kotlyarskaya IL, Zybina OA, Korolchenko DA, Nuguzhinov ZS. Fire Resistance of Building Structures and Fire Protection Materials: Bibliometric Analysis. *Fire*. 2024;8(1):10. https://doi.org/10.3390/fire8010010
- 8. Firexnull. FXN Microcapsules: Advanced Fire Suppression Technology. Firexnull. Published May 9, 2024. https://firexnull.com/products/fxn-microcapsules-advanced-fire-suppression-technology/
- 9. Electronic Adhesive Manufacturer. Microencapsulated Self-Activating Fire Extinguishing Gel: An Advanced Solution for Fire Safety Electronic Adhesive Manufacturer. Published October 16, 2024. Accessed January 29, 2025.
- https://www.electronicadhesive.com/microencapsulated-self-activating-fire-extinguishing-gel-an-advanced-solution-for-fire-safety/
- 10. Langholtz (Lead). MH. 2023 Billion-Ton Report: An Assessment of U.S. Renewable Carbon Resources. Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/SPR-2024/3103. Published 2024. Accessed January 29, 2025. https://doi.org/10.23720/BT2023/2316165

Grades K-3 Bibliography-3

- 11. McBee RM, Lucht M, Mukhitov N, et al. Engineering living and regenerative fungal—bacterial biocomposite structures. *Nature Materials*. Published online December 2, 2021. https://doi.org/10.1038/s41563-021-01123-y
- 12. Pu X, Wu Y, Liu J, Wu B. 3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications. *Chem & bio engineering*. Published online June 4, 2024. https://doi.org/10.1021/cbe.4c00024
- 13. Meyer V, Basenko EY, Benz JP, et al. Growing a circular economy with fungal biotechnology: a white paper. *Fungal Biology and Biotechnology*. 2020;7(1). https://doi.org/10.1186/s40694-020-00095-z
- 14. Rabajczyk A, Zielecka M, Popielarczyk T, Sowa T. Nanotechnology in Fire Protection—Application and Requirements. *Materials*. 2021;14(24):7849.

https://doi.org/10.3390/ma14247849

The Impact BlazeBlock Can Make

BlazeBlock is a futuristic fire-resistant hemp-based building material with self-extinguishing technology that activates upon high heat exposure. Its impact includes enhancing fire safety, reducing property damage, and promoting sustainable construction in wildfire-prone areas.

BlazeBlock Prototype (AI-Gernerated)

